Quantum Machine Learning for Security Assessment in the Internet of Medical Things (IoMT)

Author:

Rajawat Anand Singh1ORCID,Goyal S. B.2ORCID,Bedi Pradeep3ORCID,Jan Tony4ORCID,Whaiduzzaman Md5ORCID,Prasad Mukesh6ORCID

Affiliation:

1. School of Computer Sciences & Engineering, Sandip University, Nashik 422213, India

2. Faculty of Information Technology, City University, Petaling Jaya 46100, Malaysia

3. School of Computing Science and Engineering, Galgotias University, Greater Noida 203201, India

4. Centre for Artificial Intelligence Research and Optimization, Design and Creative Technology Vertical, Torrens University, Sydney 2007, Australia

5. School of Information Technology, Torrens University, Brisbane 4006, Australia

6. School of Computer Science, Faculty of Engineering and IT (FEIT), University of Technology Sydney, Sydney 2007, Australia

Abstract

Internet of Medical Things (IoMT) is an ecosystem composed of connected electronic items such as small sensors/actuators and other cyber-physical devices (CPDs) in medical services. When these devices are linked together, they can support patients through medical monitoring, analysis, and reporting in more autonomous and intelligent ways. The IoMT devices; however, often do not have sufficient computing resources onboard for service and security assurance while the medical services handle large quantities of sensitive and private health-related data. This leads to several research problems on how to improve security in IoMT systems. This paper focuses on quantum machine learning to assess security vulnerabilities in IoMT systems. This paper provides a comprehensive review of both traditional and quantum machine learning techniques in IoMT vulnerability assessment. This paper also proposes an innovative fused semi-supervised learning model, which is compared to the state-of-the-art traditional and quantum machine learning in an extensive experiment. The experiment shows the competitive performance of the proposed model against the state-of-the-art models and also highlights the usefulness of quantum machine learning in IoMT security assessments and its future applications.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3