Task Allocation Methods and Optimization Techniques in Edge Computing: A Systematic Review of the Literature

Author:

Patsias Vasilios1ORCID,Amanatidis Petros1ORCID,Karampatzakis Dimitris1ORCID,Lagkas Thomas1ORCID,Michalakopoulou Kalliopi2ORCID,Nikitas Alexandros2

Affiliation:

1. Department of Computer Science, International Hellenic University, 65404 Kavala, Greece

2. Department of Logistics, Marketing, Hospitality and Analytics, Huddersfield Business School, University of Huddersfield, Huddersfield HD1 3DH, UK

Abstract

Task allocation in edge computing refers to the process of distributing tasks among the various nodes in an edge computing network. The main challenges in task allocation include determining the optimal location for each task based on the requirements such as processing power, storage, and network bandwidth, and adapting to the dynamic nature of the network. Different approaches for task allocation include centralized, decentralized, hybrid, and machine learning algorithms. Each approach has its strengths and weaknesses and the choice of approach will depend on the specific requirements of the application. In more detail, the selection of the most optimal task allocation methods depends on the edge computing architecture and configuration type, like mobile edge computing (MEC), cloud-edge, fog computing, peer-to-peer edge computing, etc. Thus, task allocation in edge computing is a complex, diverse, and challenging problem that requires a balance of trade-offs between multiple conflicting objectives such as energy efficiency, data privacy, security, latency, and quality of service (QoS). Recently, an increased number of research studies have emerged regarding the performance evaluation and optimization of task allocation on edge devices. While several survey articles have described the current state-of-the-art task allocation methods, this work focuses on comparing and contrasting different task allocation methods, optimization algorithms, as well as the network types that are most frequently used in edge computing systems.

Funder

European Union’s Horizon Europe Research and Innovation Programme

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3