Abstract
Background: Mirroring the image of the affected side is a widely used technique for surgical planning in orthopedic surgery, especially for fractures and custom-made prostheses. Our objective is to evaluate the three-dimensional symmetry of the femurs using finite element analysis and manual alignment. Methods: Using the computed tomography of 15 patients without lower limb pathology, 30 3D biomodels of their femurs were obtained. The error obtained through image manipulation was calculated and broken down into a rendering error and a manual overlay error. The Hausdorff–Besicovitch method was applied to obtain the total asymmetry. The manipulation error was theb subtracted from it to obtain the intrapersonal asymmetry. Results: The mean intrapersonal asymmetry was 0.93 mm. It was obtained by subtracting the error derived from rendering and alignment of 0.59 mm (SD 0.17 mm) from the overall mean error of 1.52 mm (SD 1.45). Conclusions: Intrapersonal femoral asymmetry is low enough to use the mirror image of the healthy side as a reference for three-dimensional surgical planning. This type of planning is especially useful in deformity surgery when the objective of the surgery is not to restore only one specific parameter but to obtain a general functional morphology when a healthy contralateral femur is available.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献