The Mottled Capsid of the Salmonella Giant Phage SPN3US, a Likely Maturation Intermediate with a Novel Internal Shell

Author:

Heymann J. BernardORCID,Wang Bing,Newcomb William W.,Wu Weimin,Winkler Dennis C.ORCID,Cheng Naiqian,Reilly Erin R.,Hsia Ru-Ching,Thomas Julie A.,Steven Alasdair C.

Abstract

“Giant” phages have genomes of >200 kbp, confined in correspondingly large capsids whose assembly and maturation are still poorly understood. Nevertheless, the first assembly product is likely to be, as in other tailed phages, a procapsid that subsequently matures and packages the DNA. The associated transformations include the cleavage of many proteins by the phage-encoded protease, as well as the thinning and angularization of the capsid. We exploited an amber mutation in the viral protease gene of the Salmonella giant phage SPN3US, which leads to the accumulation of a population of capsids with distinctive properties. Cryo-electron micrographs reveal patterns of internal density different from those of the DNA-filled heads of virions, leading us to call them “mottled capsids”. Reconstructions show an outer shell with T = 27 symmetry, an embellishment of the HK97 prototype composed of the major capsid protein, gp75, which is similar to some other giant viruses. The mottled capsid has a T = 1 inner icosahedral shell that is a complex network of loosely connected densities composed mainly of the ejection proteins gp53 and gp54. Segmentation of this inner shell indicated that a number of densities (~12 per asymmetric unit) adopt a “twisted hook” conformation. Large patches of a proteinaceous tetragonal lattice with a 67 Å repeat were also present in the cell lysate. The unexpected nature of these novel inner shell and lattice structures poses questions as to their functions in virion assembly.

Funder

National Institute of General Medical Sciences

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3