UnVELO: Unsupervised Vision-Enhanced LiDAR Odometry with Online Correction

Author:

Li Bin1ORCID,Ye Haifeng1ORCID,Fu Sihan1ORCID,Gong Xiaojin1ORCID,Xiang Zhiyu1

Affiliation:

1. Faculty of the College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China

Abstract

Due to the complementary characteristics of visual and LiDAR information, these two modalities have been fused to facilitate many vision tasks. However, current studies of learning-based odometries mainly focus on either the visual or LiDAR modality, leaving visual–LiDAR odometries (VLOs) under-explored. This work proposes a new method to implement an unsupervised VLO, which adopts a LiDAR-dominant scheme to fuse the two modalities. We, therefore, refer to it as unsupervised vision-enhanced LiDAR odometry (UnVELO). It converts 3D LiDAR points into a dense vertex map via spherical projection and generates a vertex color map by colorizing each vertex with visual information. Further, a point-to-plane distance-based geometric loss and a photometric-error-based visual loss are, respectively, placed on locally planar regions and cluttered regions. Last, but not least, we designed an online pose-correction module to refine the pose predicted by the trained UnVELO during test time. In contrast to the vision-dominant fusion scheme adopted in most previous VLOs, our LiDAR-dominant method adopts the dense representations for both modalities, which facilitates the visual–LiDAR fusion. Besides, our method uses the accurate LiDAR measurements instead of the predicted noisy dense depth maps, which significantly improves the robustness to illumination variations, as well as the efficiency of the online pose correction. The experiments on the KITTI and DSEC datasets showed that our method outperformed previous two-frame-based learning methods. It was also competitive with hybrid methods that integrate a global optimization on multiple or all frames.

Funder

Primary Research and Development Plan of Zhejiang Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3