A Hybrid Level Set Method for the Topology Optimization of Functionally Graded Structures

Author:

Fu Junjian,Shu Zhengtao,Gao LiangORCID,Zhou Xiangman

Abstract

This paper presents a hybrid level set method (HLSM) to design novelty functionally graded structures (FGSs) with complex macroscopic graded patterns. The hybrid level set function (HLSF) is constructed to parametrically model the macro unit cells by introducing the affine concept of convex optimization theory. The global weight coefficients on macro unit cell nodes and the local weight coefficients within the macro unit cell are defined as master and slave design variables, respectively. The local design variables are interpolated by the global design variables to guarantee the C0 continuity of neighboring unit cells. A HLSM-based topology optimization model for the FGSs is established to maximize structural stiffness. The optimization model is solved by the optimality criteria (OC) algorithm. Two typical FGSs design problems are investigated, including thin-walled stiffened structures (TWSSs) and functionally graded cellular structures (FGCSs). In addition, additively manufactured FGCSs with different core layers are tested for bending performance. Numerical examples show that the HLSM is effective for designing FGSs like TWSSs and FGCSs. The bending tests prove that FGSs designed using HLSM are have a high performance.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance Open Foundation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3