Microstructural Variations in Laser Powder Bed Fused Al–15%Fe Alloy at Intermediate Temperatures

Author:

Wang Wenyuan,Takata NaokiORCID,Suzuki Asuka,Kobashi Makoto,Kato MasakiORCID

Abstract

The samples of the Al–15Fe (mass%) binary alloy that were additively manufactured by laser powder bed fusion (L-PBF) were exposed to intermediate temperatures (300 and 500 °C), and the thermally induced variations in their microstructural characteristics were investigated. The L-PBF-manufactured sample was found to have a microstructure comprising a stable θ-Al13Fe4 phase localized around melt-pool boundaries and several spherical metastable Al6Fe-phase particles surrounded by a nanoscale α-Al/Al6Fe cellular structure in the melt pools. The morphology of the θ phase remained almost unchanged even after 1000 h of exposure at 300 °C. Moreover, the nanoscale α-Al/Al6Fe cellular structure dissolved in the α-Al matrix; this was followed by the growth (and nucleation) of the spherical Al6Fe-phase particles and the precipitation of the θ phase. Numerous equiaxed grains were formed in the α-Al matrix during the thermal exposure, which led to the formation of a relatively homogenous microstructure. The variations in these microstructural characteristics were more pronounced at the higher investigated temperature of 500 °C.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3