Creep Life Prediction of 10CrMo9–10 Steel by Larson–Miller Model

Author:

Guštin Agnieszka Zuzanna,Žužek Borut,Podgornik Bojan

Abstract

Creep is defined as the permanent deformation of materials under the effect of sustained stress and elevated temperature for long periods of time, which can essentially lead to fracture. Due to very time-consuming and expensive testing requirements, existing experimental creep data are often analyzed using derived engineering parameters and models to predict and find the correlations between creep life (time to rupture), temperature and stress. The objective of this study was to analyze and compare different numerical algorithms by using the Larson–Miller parameter (LMP) extrapolation model. Calculations were performed using the classical LMP equation where different values of parameter C were selected, as well as using a modified LMP equation in which parameter C was stress dependent C(σ). The impact of two different approaches of extrapolation and correlation functions (linear and polynomial) applied to fit the LMP model was also investigated. A detailed analysis was performed to choose the best extrapolation fit function and error tolerance. The numerical algorithm implemented was validated through creep rupture testing performed on 10CrMo9–10 steel at 600 °C (873 K) and 80 MPa. Creep model behavior analysis proved that different values of C can significantly change the estimated time to rupture. An excellent response of the LMP model was obtained by considering polynomial dependency when parameter C was assumed to be 18, especially for the temperature range from 773 to 873 K. Promising results were also achieved when parameter C was taken as stress-dependent, but only for linear fitting, which requires further analysis. However, at validation stage it turned out that only the linear extrapolation function and C taken as a constant value provided adequate time-to-rupture prediction. In the case of C = 18, estimated time was slightly overestimated (~8%) and for C = 20 it was underestimated by 27%. In all other cases error largely exceeded 50%.

Publisher

MDPI AG

Subject

General Materials Science

Reference22 articles.

1. Mechanical Behavior of Materials

2. Modeling of Creep for Structural Analysis;Naumenko,2007

3. Introduction to Creep;Evans,1993

4. A time-temperature relationship for rupture and creep stresses;Larson;Trans. ASME,1952

5. CORRELATIONS OF RUPTURE DATA FOR METALS AT ELEVATED TEMPERATURES

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3