Impact of Rotor Material Wear on the Aluminum Refining Process

Author:

Prášil Tomáš,Socha Ladislav,Gryc KarelORCID,Svizelová JanaORCID,Saternus MariolaORCID,Merder TomaszORCID,Pieprzyca JacekORCID,Gráf Martin

Abstract

The paper presents the results of tests carried out during the refining of the AlSi9Cu3(Fe) alloy in industrial conditions at the FDU stand. In the tests, three different rotors made of classical graphite, fine-grained graphite and classical graphite with SiC spraying were tested for the degree of wear. A series of tests was conducted for five cases—0% to 100% of consumption every 25%—corresponding to the cycles of the refining process. The number of cycles corresponding to 100% wear of each rotor was determined as 1112. The results of the rotor wear profile for all types of graphite after the assumed cycles are presented. Comparison of CAD models of new rotors and 3D scans of rotors in the final stage of operation revealed material losses during operational tests. The study assessed the efficiency of the rotor in terms of its service life as well as work efficiency. It was estimated on the basis of the calculated values of the Dichte Index (DI) and the density of the samples solidified in the vacuum. The structure of samples before and after refining at various stages of rotor wear is also presented, and the results are discussed.

Funder

Czech Ministry of Industry and Trade

Silesian University of Technology

Publisher

MDPI AG

Subject

General Materials Science

Reference28 articles.

1. A scientific basis for degassing aluminum;Sigworth;AFS Trans.,1987

2. A survey of inclussions in aluminium;Siemensen;Aluminum,1980

3. Removal of Impurity Elements from Molten Aluminum: A Review

4. Molten metal fluxing/treatment: How best achieve the desired quality requirements;Taylor;Aluminum,2003

5. Latest trends in molten metal in-line treatment;Chateau;Alum. Times,2003

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3