Multimodal Gait Abnormality Recognition Using a Convolutional Neural Network–Bidirectional Long Short-Term Memory (CNN-BiLSTM) Network Based on Multi-Sensor Data Fusion

Author:

Li Jing12,Liang Weisheng1,Yin Xiyan1,Li Jun3,Guan Weizheng3

Affiliation:

1. School of Mechanical Engineering and Hubei Modern Manufacturing Quality Engineering Key Laboratory, Hubei University of Technology, Wuhan 430068, China

2. School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

3. Detroit Green Technology Institute, Hubei University of Technology, Wuhan 430068, China

Abstract

Global aging leads to a surge in neurological diseases. Quantitative gait analysis for the early detection of neurological diseases can effectively reduce the impact of the diseases. Recently, extensive research has focused on gait-abnormality-recognition algorithms using a single type of portable sensor. However, these studies are limited by the sensor’s type and the task specificity, constraining the widespread application of quantitative gait recognition. In this study, we propose a multimodal gait-abnormality-recognition framework based on a Convolutional Neural Network-Bidirectional Long Short-Term Memory (CNN-BiLSTM) network. The as-established framework effectively addresses the challenges arising from smooth data interference and lengthy time series by employing an adaptive sliding window technique. Then, we convert the time series into time–frequency plots to capture the characteristic variations in different abnormality gaits and achieve a unified representation of the multiple data types. This makes our signal processing method adaptable to several types of sensors. Additionally, we use a pre-trained Deep Convolutional Neural Network (DCNN) for feature extraction, and the consequently established CNN-BiLSTM network can achieve high-accuracy recognition by fusing and classifying the multi-sensor input data. To validate the proposed method, we conducted diversified experiments to recognize the gait abnormalities caused by different neuropathic diseases, such as amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and Huntington’s disease (HD). In the PDgait dataset, the framework achieved an accuracy of 98.89% in the classification of Parkinson’s disease severity, surpassing DCLSTM’s 96.71%. Moreover, the recognition accuracy of ALS, PD, and HD on the PDgait dataset was 100%, 96.97%, and 95.43% respectively, surpassing the majority of previously reported methods. These experimental results strongly demonstrate the potential of the proposed multimodal framework for gait abnormality identification. Due to the advantages of the framework, such as its suitability for different types of sensors and fewer training parameters, it is more suitable for gait monitoring in daily life and the customization of medical rehabilitation schedules, which will help more patients alleviate the harm caused by their diseases.

Funder

Science and Technology Major Project of Hubei Province of China

Research Start-up Fund from Hubei University of Technology

open fund from Hubei Modern Manufacturing Quality Engineering Key Laboratory

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3