AMARO—An On-Board Ship Detection and Real-Time Information System

Author:

Willburger KatharinaORCID,Schwenk KurtORCID,Brauchle JörgORCID

Abstract

The monitoring of worldwide ship traffic is a field of high topicality. Activities like piracy, ocean dumping, and refugee transportation are in the news every day. The detection of ships in remotely sensed data from airplanes, drones, or spacecraft contributes to maritime situational awareness. However, the crucial factor is the up-to-dateness of the extracted information. With ground-based processing, the time between image acquisition and delivery of the extracted product data is in the range of several hours, mainly due to the time consumed by storing and transmission of the large image data. By processing and analyzing them on-board and transmitting the product data directly as ship position, heading, and velocity, the delay can be shortened to some minutes. Real-time connections via satellite telecommunication services allow small packets of information to be sent directly to the user without significant delay. The AMARO (Autonomous Real-Time Detection of Moving Maritime Objects) project at DLR is a feasibility study of an on-board ship detection system involving on-board processing and real-time communication. The operation of a prototype system was successfully demonstrated on an airborne platform in spring 2018. The on-ground user could be informed about detected vessels within minutes after sighting without a direct communication link. In this article, the scope, aim, and design of the AMARO system are described, and the results of the flight experiment are presented in detail.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference44 articles.

1. International Maritime Organization (IMO)—IMO Profilehttps://business.un.org/en/entities/13

2. European Maritime Safety Agency—SafeSeaNethttp://www.emsa.europa.eu/ssn-main.html

3. Global maritime domain awareness: a sustainable development perspective

4. Increasing Cooperation between the European Maritime Domain Authorities; IARAS 2017https://www.iaras.org/iaras/home/caijes/increasing-cooperation-between-the-european-maritime-domain-authorities

5. AIS-based Mobile Satellite Service expands opportunities for affordable global ocean observing and monitoring

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3