Do Written Responses to Open-Ended Questions on Fourth-Grade Online Formative Assessments in Mathematics Help Predict Scores on End-of-Year Standardized Tests?

Author:

Urrutia FelipeORCID,Araya RobertoORCID

Abstract

Predicting long-term student achievement is a critical task for teachers and for educational data mining. However, most of the models do not consider two typical situations in real-life classrooms. The first is that teachers develop their own questions for online formative assessment. Therefore, there are a huge number of possible questions, each of which is answered by only a few students. Second, online formative assessment often involves open-ended questions that students answer in writing. These types of questions in online formative assessment are highly valuable. However, analyzing the responses automatically can be a complex process. In this paper, we address these two challenges. We analyzed 621,575 answers to closed-ended questions and 16,618 answers to open-ended questions by 464 fourth-graders from 24 low socioeconomic status (SES) schools. Using regressors obtained from linguistic features of the answers and an automatic incoherent response classifier, we built a linear model that predicts the score on an end-of-year national standardized test. We found that despite answering 36.4 times fewer open-ended questions than closed questions, including features of the students’ open responses in our model improved our prediction of their end-of-year test scores. To the best of our knowledge, this is the first time that a predictor of end-of-year test scores has been improved by using automatically detected features of answers to open-ended questions on online formative assessments.

Funder

Fondo Nacional de Ciencia Tecnología e Innovación

Publisher

MDPI AG

Subject

Cognitive Neuroscience,Developmental and Educational Psychology,Education,Experimental and Cognitive Psychology

Reference36 articles.

1. Towards Dialogic Teaching: Rethinking Classroom Talk;Alexander,2017

2. Predicting end-of-year accountability assessment scores from monthly student records in an online tutoring system;Anozie;Paper presented at the AAAI Workshop on Educational Data Mining,y 16

3. Teacher Training, Mentoring or Performance Support Systems;Araya,2019

4. The effect of teacher questions on elementary school students’ written responses on an online STEM platform;Araya;Advances in Human Factors in Training, Education, and Learning Sciences. Advances in Intelligent Systems and Computing,2017

5. Guiding Technology to Promote Student Practice, Chapter 6;Araya,2020

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3