Conditional Dependence across Slow and Fast Item Responses: With a Latent Space Item Response Modeling Approach

Author:

Kim Nana1ORCID,Jeon Minjeong2ORCID,Partchev Ivailo3

Affiliation:

1. Department of Educational Psychology, College of Education and Human Development, University of Minnesota, Twin-Cities, MN 55455, USA

2. Social Research Methodology, Department of Education, School of Education and Information Studies, University of California, Los Angeles, CA 90095, USA

3. Cito, 6814 CM Arnhem, The Netherlands

Abstract

There recently have been many studies examining conditional dependence between response accuracy and response times in cognitive tests. While most previous research has focused on revealing a general pattern of conditional dependence for all respondents and items, it is plausible that the pattern may vary across respondents and items. In this paper, we attend to its potential heterogeneity and examine the item and person specificities involved in the conditional dependence between item responses and response times. To this end, we use a latent space item response theory (LSIRT) approach with an interaction map that visualizes conditional dependence in response data in the form of item–respondent interactions. We incorporate response time information into the interaction map by applying LSIRT models to slow and fast item responses. Through empirical illustrations with three cognitive test datasets, we confirm the presence and patterns of conditional dependence between item responses and response times, a result consistent with previous studies. Our results further illustrate the heterogeneity in the conditional dependence across respondents, which provides insights into understanding individuals’ underlying item-solving processes in cognitive tests. Some practical implications of the results and the use of interaction maps in cognitive tests are discussed.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3