Mapping Very-High-Resolution Evapotranspiration from Unmanned Aerial Vehicle (UAV) Imagery

Author:

Park Suyoung,Ryu DongryeolORCID,Fuentes SigfredoORCID,Chung HoamORCID,O’Connell Mark,Kim Junchul

Abstract

There is a growing concern about water scarcity and the associated decline in Australia’s agricultural production. Efficient water use as a natural resource requires more precise and adequate monitoring of crop water use and irrigation scheduling. Therefore, accurate estimations of evapotranspiration (ET) at proper spatial–temporal scales are critical to understand the crop water demand and uptake and to enable optimal irrigation scheduling. Remote sensing (RS)-based ET estimation has been adopted as a method for large-scale applications when the detailed spatial representation of ET is required. This research aimed to estimate instantaneous ET using very-high-resolution (VHR) multispectral and thermal imagery (GSD < 8 cm) collected using a single flight of a UAV over a high-density peach orchard with a discontinuous canopy. The energy balance component estimation was based on the high-resolution mapping of evapotranspiration (HRMET) model. A tree-by-tree ET map was produced using the canopy surface temperature and the leaf area index (LAI) resampled at the corresponding scale via a systematic feature segmentation method based on pure canopy extraction. Results showed a strong linear relationship between the estimated ET and the leaf transpiration (n = 42) measured using a gas exchange sensor, with a coefficient of determination (R2) of 0.89. Daily ET (5.5 mm d−1) derived from the instantaneous ET map was comparable with daily crop ET (6.4 mm d−1) determined by the meteorological approach over the study site. The proposed approach has important implications for mapping tree-by-tree ET over horticultural fields using VHR imagery.

Funder

Australian Government with co-investment from DEDJTR

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference36 articles.

1. Impact of water scarcity in Australia on global food security in an era of climate change

2. The effect of reduced water supply on peach tree growth and yields [irrigation levels];Mitchell;J. Am. Soc. Hortic. Sci.,1982

3. Drought water management: An australian perspective;Goodwin,2017

4. The effect of deficit irrigation on seasonal variations of plant water use in Olea europaea L.

5. Effect of deficit irrigation on vine performance and grape composition of Vitis vinifera L. cv. Muscat of Alexandria

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3