Modeling Soil Moisture from Multisource Data by Stepwise Multilinear Regression: An Application to the Chinese Loess Plateau

Author:

Yuan LinaORCID,Li LongORCID,Zhang Ting,Chen Longqian,Liu Weiqiang,Hu Sai,Yang Longhua

Abstract

This study aims to integrate multisource data to model the relative soil moisture (RSM) over the Chinese Loess Plateau in 2017 by stepwise multilinear regression (SMLR) in order to improve the spatial coverage of our previously published RSM. First, 34 candidate variables (12 quantitative and 22 dummy variables) from the Moderate Resolution Imaging Spectroradiometer (MODIS) and topographic, soil properties, and meteorological data were preprocessed. Then, SMLR was applied to variables without multicollinearity to select statistically significant (p-value < 0.05) variables. After the accuracy assessment, monthly, seasonal, and annual spatial patterns of RSM were mapped at 500 m resolution and evaluated. The results indicate that there was a high potential of SMLR to model RSM with the desired accuracy (best fit of the model with Pearson’s r = 0.969, root mean square error = 0.761%, and mean absolute error = 0.576%) over the Chinese Loess Plateau. The variables of elevation (0–500 m and 2000–2500 m), precipitation, soil texture of loam, and nighttime land surface temperature can continuously be used in the regression models for all seasons. Including dummy variables improved the model fit both in calibration and validation. Moreover, the SMLR-modeled RSM achieved better spatial coverage than that of the reference RSM for almost all periods. This is a significant finding as the SMLR method supports the use of multisource data to complement and/or replace coarse resolution satellite imagery in the estimation of RSM.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3