Assessment of Rainfall-Induced Landslide Distribution Based on Land Disturbance in Southern Taiwan

Author:

Tseng Chih-MingORCID,Chen Yie-Ruey,Chang Chwen-Ming,Chue Yung-Sheng,Hsieh Shun-ChiehORCID

Abstract

This study explores the impact of rainfall on the followed-up landslides after a severe typhoon and the relationship between various rainfall events and the occurrence, scale, and regional characteristics of the landslides, including second landslides. Moreover, the influence of land disturbance was evaluated. The genetic adaptive neural network was used in combination with the texture analysis of the geographic information system for satellite image classification and interpretation to analyze land-use change and retrieve disaster records and surface information after five rainfall events from Typhoon Morakot (2009) to Typhoon Nanmadol (2011). The results revealed that except for extreme Morakot rains, the greater the degree of slope disturbance after rain, the larger the exposed slope. Extreme rainfall similar to Morakot strikes may have a greater impact on the bare land area than on slope disturbance. Moreover, the relationship between the bare land area and the index of land disturbance condition (ILDC) is positive, and the ratio of the bare land area to the quantity of bare land after each rainfall increases with the ILDC. With higher effective accumulative rainfall on the slope in the study area or greater slope disturbance, the landslide area at the second landslide point tended to increase.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference57 articles.

1. Earthquake-triggered increase in sediment delivery from an active mountain belt

2. Landslides triggered by the 7 August 2009 Typhoon Morakot in southern Taiwan

3. Catastrophic landslide induced by Typhoon Morakot, Shiaolin, Taiwan

4. Image Processing GIS for Remote Sensing-Techniques Applications;Liu,2016

5. The advances in the application of remote sensing technology to the study of land covering and land utilization;Liu;Remote Sens. Land Resour.,2001

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3