Accuracy Comparison on Culvert-Modified Digital Elevation Models of DSMA and BA Methods Using ALS Point Clouds

Author:

Fareed NadeemORCID,Wang Chi-KueiORCID

Abstract

High-resolution digital elevation models (HR-DEMs) originating from airborne laser scanning (ALS) point clouds must be transformed into Culvert-modified DEMs for hydrological and geomorphological analysis. To produce a culvert-modified DEM, information on the locations of drainage structures (DSs) (e.g., bridges and culverts) is essential. Nevertheless, DS mapping techniques, whether in connection with the development of new methods or an application setting of existing methods, have always been complicated. Consequently, wide area DS data are rare, making it challenging to produce a culvert-modified DEM in a wide area capacity. Alternatively, the breach algorithm (BA) method is a standard procedure to obtain culvert-modified DEMs in the absence of DS data, solving the problem to some extent. This paper addresses this shortcoming using a newly developed drainage structure mapping algorithm (DSMA) for obtaining a culvert-modified DEM for an area of 36 km2 in Vermont, USA. Benchmark DS data are used as a standard reference to assess the performance of the DSMA method compared to the BA method. A consistent methodological framework is formulated to obtain a culvert-modified DEM using DS data, mapped using the DSMA and resultant culvert-modified DEM is then compared with BA method respectively. The DSs found from the culvert-modified DEMs were reported as true positive (TP), false positive (FP), and false negative (FN). Based on TP, FP, and FN originating from the culvert-modified DEMs of both methods, the evaluation metrics of the false positive rate (FPR) (i.e., the commission error) and false negative rate (FNR) (i.e., the omission error) were computed. Our evaluation showed that the newly developed DSMA-based DS data resulted in an FPR of 0.05 with federal highway authorities (FHWA) roads and 0.12 with non-FHWA roads. The FNR with FHWA roads was 0.07, and with non-FHWA roads, it was 0.38. The BA method showed an FPR of 0.28 with FHWA roads and 0.62 with non-FHWA roads. Similarly, the FNR for the BA method was 0.32 with FHWA roads and 0.61 with non-FHWA roads. The statistics based on the FPR and FNR showed that the DSMA-based culvert-modified DEM was more accurate compared with the BA method, and the formulated framework for producing culvert-modified DEMs using DSMA-based DS data was robust.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3