Integral Transform Method to Solve the Problem of Porous Slider without Velocity Slip

Author:

Faraz Naeem,Khan Yasir,Lu Dian ChenORCID,Goodarzi Marjan

Abstract

This study is about the lubrication of a long porous slider in which the fluid is injected into the porous bottom. The similarity transformation reduces the Navier-Stokes equations to couple nonlinear, ordinary differential equations, which are solved by a new algorithm. The proposed technique is based on integral transformation. Apparently, there is great symmetry between proposed method and variation iteration method, Adomian decomposition method but in integral transform method all the boundary conditions are applied, then a recursive scheme is used for the analytical solutions, which is unlike the Variational Iteration Method, Adomian Decomposition Method, and other existing analytical methods. Solutions are obtained for much larger Reynolds numbers, and they are compared with analytical and numerical methods. Effects of Reynolds number on velocity components are presented.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3