Security-Related Hardware Cost Optimization for CAN FD-Based Automotive Cyber-Physical Systems

Author:

Xie YongORCID,Guo Yili,Yang Sheng,Zhou Jian,Chen Xiaobai

Abstract

The introduction of various networks into automotive cyber-physical systems (ACPS) brings great challenges on security protection of ACPS functions, the auto industry recommends to adopt the hardware security module (HSM)-based multicore ECU to secure in-vehicle networks while meeting the delay constraint. However, this approach incurs significant hardware cost. Consequently, this paper aims to reduce security enhancing-related hardware cost by proposing two efficient design space exploration (DSE) algorithms, namely, stepwise decreasing-based heuristic algorithm (SDH) and interference balancing-based heuristic algorithm (IBH), which explore the task assignment, task scheduling, and message scheduling to minimize the number of required HSMs. Experiments on both synthetical and real data sets show that the proposed SDH and IBH are superior than state-of-the-art algorithm, and the advantage of SDH and IBH becomes more obvious as the increase about the percentage of security-critical tasks. For synthetic data sets, the hardware cost can be reduced by 61.4% and 45.6% averagely for IBH and SDH, respectively; for real data sets, the hardware cost can be reduced by 64.3% and 54.4% on average for IBH and SDH, respectively. Furthermore, IBH is better than SDH in most cases, and the runtime of IBH is two or three orders of magnitude smaller than SDH and state-of-the-art algorithm.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference38 articles.

1. With “Recall” Fiat Chrysler Makes Its Car Hack Worsewww.networkworld.com/article/2953836/security/with-recall-fiat-chrysler-makes-its-car-hack-worse

2. Security-aware signal packing algorithm for CAN-based automotive cyber-physical systems;Xie;IEEE/CAA J. Autom. Sin.,2015

3. Security/Timing-Aware Design Space Exploration of CAN FD for Automotive Cyber-Physical Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3