Dexamethasone Treatment Preserves the Structure of Adult Cardiac Explants and Supports Their Long-Term Contractility In Vitro

Author:

Eisenberg Leonard M.1,Kaur Keerat1,Castillo John M.1,Edwards John G.1ORCID,Eisenberg Carol A.1

Affiliation:

1. Departments of Physiology, New York Medical College, Valhalla, NY 10595, USA

Abstract

Normal contractile function of the myocardium is essential for optimal cardiovascular health. Evaluating drug effects on cardiomyocyte function at the cellular level is difficult for long-term studies. Present culture systems rely on isolated, cardiomyocyte preparations or cardiomyocytes derived from pluripotent stem cells (PSCs), all of which have limitations. Isolated, endogenous cardiomyocytes do not remain contractile in culture long term. While PSC-derived cardiomyocytes show contractile activity for longer periods of time, their phenotype is more embryonic than adult. Here we report that dexamethasone (DEX) treatment of adult mouse atrial tissue can extend its functionality in culture. Normally, cardiac explants cease their capacity as a contractile tissue within the first month, as the tissue flattens and spreads out on the culture substrate, while the cells dedifferentiate and lose their myocardial phenotype. However, with DEX treatment, cardiac explants maintain their contractile function, 3D morphology, and myocyte phenotype for up to 6 months. Moreover, DEX also preserved the contractile phenotype of isolated rat cardiomyocytes. These data with DEX suggest that simple modifications in culture conditions can greatly improve the long-term utility of in vitro model systems for screening drugs and agents that could be employed to alleviate human cardiac disease.

Publisher

MDPI AG

Subject

Pharmacology

Reference55 articles.

1. Rhythmical activity of isolated heart muscle cells in vitro;Burrows;Science,1912

2. In vitro studies of single isolated beating heart cells;Harary;Science,1960

3. Culture of spontaneously contracting myocardial cells from adult rats;Jacobson;Cell Struct. Funct.,1977

4. Isolation and culture of neonatal mouse cardiomyocytes;Ehler;J. Vis. Exp.,2013

5. An optimized protocol for culture of cardiomyocyte from neonatal rat;Fu;Cytotechnology,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3