Study of a Fiber Optic Fabry-Perot Strain Sensor for Fuel Assembly Strain Detection

Author:

Jiao Jianan,Chen JianjunORCID,Wang Ning,Zhang Jie,Zhu Yong

Abstract

This paper proposes a fiber optic Fabry-Perot (F-P) strain sensing system using non-scan correlation demodulation applied to the health monitoring of the pressurized water reactor’s fuel assembly structures. The structural design and sensing mechanism analysis of the sensor were carried out, and the strain transfer model from the fuel sheet to the strain gauge was established. After the sensor fabrication and installation, the static tests have been conducted, and the results indicate that the sensing system can accurately measure the microstrain with a sensitivity of up to 12.6 nm/με at a high temperature (300 °C). The dynamic testing shows that the sensing system has a good frequency adaptation at 10–500 Hz. Thermal-hydraulic experiments show that the sensing system can run stably in a nuclear reactor, with high temperature, high pressure, and high-velocity flow flushing; additionally, the consistency deviation of the measured data is less than 1.5%.

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3