Social Network Sentiment Analysis Using Hybrid Deep Learning Models

Author:

Merayo Noemí1ORCID,Vegas Jesús2ORCID,Llamas César2ORCID,Fernández Patricia1ORCID

Affiliation:

1. Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad de Valladolid, 47005 Valladolid, Spain

2. Escuela de Ingeniería Informática, Universidad de Valladolid, 47005 Valladolid, Spain

Abstract

The exponential growth in information on the Internet, particularly within social networks, highlights the importance of sentiment and opinion analysis. The intrinsic characteristics of the Spanish language coupled with the short length and lack of context of messages on social media pose a challenge for sentiment analysis in social networks. In this study, we present a hybrid deep learning model combining convolutional and long short-term memory layers to detect polarity levels in Twitter for the Spanish language. Our model significantly improved the accuracy of existing approaches by up to 20%, achieving accuracies of around 76% for three polarities (positive, negative, neutral) and 91% for two polarities (positive, negative).

Funder

University of Valladolid

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference47 articles.

1. Kemp, S. (2022). Digital 2022: Global Overview Report, Kepios Pte. Ltd.. Available online: https://datareportal.com/reports/digital-2022-global-overview-report.

2. The evolution of sentiment analysis—A review of research topics, venues, and top cited papers;Graziotin;Comput. Sci. Rev.,2018

3. Sentiment analysis in Twitter;Nat. Lang. Eng.,2014

4. Cervantes, I. (2021). El Español en el Mundo 2021. Anuario del Instituto Cervantes, El español en el Mundo, Instituto Cervantes. Available online: https://cvc.cervantes.es/lengua/anuario/anuario_21/.

5. Perez-Rosas, V., Banea, C., and Mihalcea, R. (2012, January 23–25). Learning Sentiment Lexicons in Spanish. Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC’12), Istanbul, Turkey.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sentiment Analysis with YouTube Comments Using Deep Learning Approaches;2024 IEEE Conference on Computer Applications (ICCA);2024-03-16

2. Applying Deep Neural Networks and NLP Techniques for Sentiment Analysis in Social Media Data;2024 2nd International Conference on Artificial Intelligence and Machine Learning Applications Theme: Healthcare and Internet of Things (AIMLA);2024-03-15

3. Artificial Intelligence Oriented User Sentiment Evaluation System on Social Networks using Modified Deep Learning Principles;2024 5th International Conference on Mobile Computing and Sustainable Informatics (ICMCSI);2024-01-18

4. Unveiling Sentiments: A Deep Dive Into Sentiment Analysis for Low-Resource Languages—A Case Study on Hausa Texts;IEEE Access;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3