Path Optimization Using Metaheuristic Techniques for a Surveillance Robot

Author:

Peñacoba Mario1ORCID,Sierra-García Jesús Enrique1ORCID,Santos Matilde2ORCID,Mariolis Ioannis3

Affiliation:

1. Department of Digitalization, University of Burgos, 09001 Burgos, Spain

2. Institute of Knowledge Technology, Complutense University of Madrid, 28040 Madrid, Spain

3. Centre for Research and Technology Hellas, Information Technologies Institute, 570 01 Thessaloniki, Greece

Abstract

This paper presents an innovative approach to optimize the trajectories of a robotic surveillance system, employing three different optimization methods: genetic algorithm (GA), particle swarm optimization (PSO), and pattern search (PS). The research addresses the challenge of efficiently planning routes for a LiDAR-equipped mobile robot to effectively cover target areas taking into account the capabilities and limitations of sensors and robots. The findings demonstrate the effectiveness of these trajectory optimization approaches, significantly improving detection efficiency and coverage of critical areas. Furthermore, it is observed that, among the three techniques, pattern search quickly obtains feasible solutions in environments with good initial trajectories. On the contrary, in cases where the initial trajectory is suboptimal or the environment is complex, PSO works better. For example, in the high complexity map evaluated, PSO achieves 86.7% spatial coverage, compared to 85% and 84% for PS and GA, respectively. On low- and medium-complexity maps, PS is 15.7 and 18 s faster in trajectory optimization than the second fastest algorithm, which is PSO in both cases. Furthermore, the fitness function of this proposal has been compared with that of previous works, obtaining better results.

Funder

European Commission

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3