Multi-Meta Information Embedding Enhanced BERT for Chinese Mechanics Entity Recognition

Author:

Zhang Jiarong1ORCID,Yuan Jinsha1,Zhang Jing2,Luo Zhihong3,Li Aitong4

Affiliation:

1. Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, China

2. Department of New Energy Power Technology Research, COMAC Beijing Aircraft Technology Research Institute, Beijing 102211, China

3. Department of Electric Power, Inner Mongolia University of Technology, Hohhot 010051, China

4. College of Economics, Bohai University, Jinzhou 121013, China

Abstract

The automatic extraction of key entities in mechanics problems is an important means to automatically solve mechanics problems. Nevertheless, for standard Chinese, compared with the open domain, mechanics problems have a large number of specialized terms and composite entities, which leads to a low recognition capability. Although recent research demonstrates that external information and pre-trained language models can improve the performance of Chinese Named Entity Recognition (CNER), few efforts have been made to combine the two to explore high-performance algorithms for extracting mechanics entities. Therefore, this article proposes a Multi-Meta Information Embedding Enhanced Bidirectional Encoder Representation from Transformers (MMIEE-BERT) for recognizing entities in mechanics problems. The proposed method integrates lexical information and radical information into BERT layers directly by employing an information adapter layer (IAL). Firstly, according to the characteristics of Chinese, a Multi-Meta Information Embedding (MMIE) including character embedding, lexical embedding, and radical embedding is proposed to enhance Chinese sentence representation. Secondly, an information adapter layer (IAL) is proposed to fuse the above three embeddings into the lower layers of the BERT. Thirdly, a Bidirectional Long Short-Term Memory (BiLSTM) network and a Conditional Random Field (CRF) model are applied to semantically encode the output of MMIEE-BERT and obtain each character’s label. Finally, extensive experiments were carried out on the dataset built by our team and widely used datasets. The results demonstrate that the proposed method has more advantages than the existing models in the entity recognition of mechanics problems, and the precision, recall, and F1 score were improved. The proposed method is expected to provide an automatic means for extracting key information from mechanics problems.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3