Electrophysical Properties of PZT-Type Ceramics Obtained by Two Sintering Methods

Author:

Niemiec Przemysław1ORCID,Bochenek Dariusz1ORCID,Dercz Grzegorz1ORCID

Affiliation:

1. Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland

Abstract

This study demonstrates the impact of two sintering techniques on the fundamental properties of doped PZT-type ceramic materials (with Mn4+, Sb3+, Gd3+, and W6+), with the general chemical formula Pb(Zr0.49Ti0.51)0.94Mn0.021Sb0.016Gd0.012W0.012O3. The synthesis of ceramic powders was carried out through the calcination method. Two different methods were used in the final sintering process: (i) pressureless sintering (PS) and (ii) hot pressing (HP). The PZT-type ceramics were subjected to electrophysical measurements, encompassing various analyses such as X-ray diffraction (XRD), microstructure (scanning electron microscopy (SEM)), ferroelectric and dielectric properties, and DC electrical conductivity. The analysis of the crystal structure at room temperature showed that the material belongs to the perovskite structure from the tetragonal phase (P4mm space group) without foreign phases. Both sintering methods ensure obtaining the material with appropriate dielectric and ferroelectric parameters, and the tests carried out verified that the ceramic materials have a diverse range of parameters appropriate for use in micromechatronic and microelectronic applications. The obtained ceramic material has high permittivity values, low dielectric loss tangent values, and high resistance. At room temperature, the ceramic samples’ P-E hysteresis loops do not saturate at a field of 3.5 kV/mm (Pm maximum polarization is in the range from 12.24 to 13.47 μC/cm2). However, at higher temperatures, the P-E hysteresis loops become highly saturated, and, at 110 °C, the Pm maximum polarization values are in the range from 28.02 to 30.83 μC/cm2.

Funder

Polish Ministry of Education and Science

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3