A Reinforcement Learning Framework with Oversampling and Undersampling Algorithms for Intrusion Detection System

Author:

Abedzadeh Najmeh1ORCID,Jacobs Matthew1

Affiliation:

1. Computer Science, Catholic University of America, Washington, DC 20017, USA

Abstract

Intrusion detection systems (IDSs) play a pivotal role in safeguarding networks and systems against malicious activities. However, the challenge of imbalanced datasets significantly impacts IDS research, skewing learning models towards the majority class and diminishing accuracy for the minority class. This study introduces the Reinforcement Learning (RL) Framework with Oversampling and Undersampling Algorithm (RLFOUA) to address imbalanced datasets. RLFOUA combines RL with diverse resampling algorithms, creating an adaptive learning environment. It integrates the novel True False Rate Synthetic Minority Oversampling Technique (TFRSMOTE) algorithm, emphasizing data-level approaches. Additionally, RLFOUA employs a cost-sensitive approach based on classification metrics. Using the CSE-CIC-IDS2018 and NSL-KDD datasets, RLFOUA demonstrates substantial improvement over existing resampling techniques. Achieving an accuracy of 0.9981 for NSL-KDD and 0.9846 for CSE-CIC-IDS2018, the framework’s performance is evaluated using F1 score, accuracy, precision, recall, and a proposed Index Metric (IM). RLFOUA presents a significant advancement in addressing class imbalance challenges in IDS. It shows an average accuracy improvement of 21.5% compared to the recent resampling technique AESMOTE on the NSL-KDD dataset.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3