The Influence of Co-Firing Coal with Biomass Syngas on the Thermodynamic Parameters of a Boiler

Author:

Wang Jin1,Yao Qiaopeng1,Jin Xiaoling1,Deng Lei1ORCID

Affiliation:

1. State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Biomass syngas can be considered as a supplementary fuel to partially substitute coal, which is beneficial to CO2 emission reduction. For the case study, the influences of co-firing typical biomass syngas (gasification from palm, straw, and wood) with coal on the thermodynamic parameters of a 300 MW tangentially fired boiler are evaluated through a thermal calculation based on the principles of mass conservation, heat conservation, and heat transfer. The effects of boiler loads, biomass syngas species, and consumption rates are discussed. The results show that the introduction of biomass syngas weakens the radiative characteristics of the flame and reduces the furnace exit flue-gas temperature. As 3 × 104 m3 h−1 of wood syngas is introduced, the decrement of thermal efficiency reaches 0.4%, while that of the coal consumption rate is 5.1%. The retrofitting of the boiler was not necessary and the corrosion of the low-temperature heating surface did not appear. The CO2 annual emission reduction could achieve 0.001 to 0.095 million tons for palm syngas, 0.005 to 0.069 million tons for straw syngas, and 0.013 to 0.107 million tons for wood syngas with increasing biomass syngas consumption rates under the full load. Moreover, the main thermodynamic parameters changed more significantly under the low loads.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

1. Climate Change and Underserved Communities;Ziegler;Physician Assist. Clin.,2019

2. Influence of biomass gas parameters on coupled coal-fired biomass generation;Wang;Therm. Power Gener.,2021

3. Analysis on organic compounds in water leachate from biomass;Long;Renew. Energy,2020

4. Cogasification of Coal and Biomass in an Integrated Gasification Combined Cycle Power Plant: Effects on Thermodynamic Performance and Gas Composition;Olivieri;J. Energy Eng.,2020

5. Biomass co-firing technology with policies, challenges, and opportunities: A global review;Roni;Renew. Sustain. Energy Rev.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3