Receding Horizon Optimization for Cooperation of Connected Vehicles at Signal-Free Intersections under Mixed-Automated Traffic

Author:

Gong Jian1,Chen Weijie2,Zhou Ziyi3ORCID

Affiliation:

1. Intelligent Transportation System Research Center, Southeast University, Nanjing 210096, China

2. School of Civil and Transportation Engineering, Ningbo University of Technology, Ningbo 315211, China

3. School of Transportation, Southeast University, Nanjing 210096, China

Abstract

This paper proposes a distributed coordination scheme for connected vehicles, including automated vehicles (AVs) and manual vehicles (MVs), at signal-free intersections. The cooperation issue of vehicles at an intersection is formulated into a multi-objective optimization problem that aims to eliminate conflicts and improve traffic mobility and fuel economy. For this purpose, the future trajectories of AVs and MVs are predicted by the respective car-following models, and are shared with neighboring vehicles in conflict relationships. The proposed scheme optimizes the sum of the performance of AVs within the cooperative zone in a prediction horizon. A distributed optimization algorithm in the receding horizon is presented to obtain the local optimal solutions, and is tested in simulations with different demand levels and penetration rates of AVs. The results show that the proposed scheme reduces travel time by 29.7–45.5% and 34.5–49.2%, and decreases fuel consumption by 27.6–35.3% and 21.6–29.9% under 70–100% penetration rates of AVs, compared to the no-control operation and fixed-time signal control strategy. In addition, a comparison simulation with the strategy of jointly optimizing the vehicle trajectory and signal timing is conducted to evaluate the relative merits of the proposed scheme.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3