Improving Automated Machine-Learning Systems through Green AI

Author:

Castellanos-Nieves Dagoberto1ORCID,García-Forte Luis1ORCID

Affiliation:

1. Computer and Systems Engineering Department, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain

Abstract

Automated machine learning (AutoML), which aims to facilitate the design and optimization of machine-learning models with reduced human effort and expertise, is a research field with significant potential to drive the development of artificial intelligence in science and industry. However, AutoML also poses challenges due to its resource and energy consumption and environmental impact, aspects that have often been overlooked. This paper predominantly centers on the sustainability implications arising from computational processes within the realm of AutoML. Within this study, a proof of concept has been conducted using the widely adopted Scikit-learn library. Energy efficiency metrics have been employed to fine-tune hyperparameters in both Bayesian and random search strategies, with the goal of enhancing the environmental footprint. These findings suggest that AutoML can be rendered more sustainable by thoughtfully considering the energy efficiency of computational processes. The obtained results from the experimentation are promising and align with the framework of Green AI, a paradigm aiming to enhance the ecological footprint of the entire AutoML process. The most suitable proposal for the studied problem, guided by the proposed metrics, has been identified, with potential generalizability to other analogous problems.

Funder

Emerging Heterogeneous Architectures for Machine Learning and Energy Efficiency

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3