Self-Excited Thermoacoustic Instability Behavior of a Hedge Premixed Combustion System with an Asymmetric Air/Fuel Supply or Combustion Condition

Author:

Du Yongbo1ORCID,Zhang Yuanhang2,Li Xiaojin3,Zhang Jingkun1,Da Yaodong4,Jia Yun3,Che Defu1

Affiliation:

1. State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

2. Shanghai Nuclear Engineering Research & Design Institute Co., Ltd., Shanghai 200233, China

3. Yulin Hydrocarbon Research Institute Co., Ltd., Yulin 719000, China

4. China Special Equipment Inspection and Research Institute, Beijing 100029, China

Abstract

Self-excited thermoacoustic instability (SETAI) is an undesirable and dangerous phenomenon in combustion systems. However, its control is difficult, thus greatly limiting the development of combustion technology. Our previous works clarified how the premixed chamber length (LP) and equivalence ratio (φ) influence SETAI behavior in a symmetrical hedge premixed combustion system. On real-world sites, however, the supply structure or combustion condition in a multi-flame system could be asymmetric due to space limitations or combustion adjustment needs. This paper aims to clarify the SETAI behavior of a combustion system with an asymmetric supply structure or an asymmetric combustion condition. The results indicate that the sound pressure amplitude under strong oscillation can reach 160 dB, which is about 5% of the total pressure. The SETAI state under the asymmetric condition is determined by the coupling between the heat release oscillation and sound pressure oscillation on each side and their cooperation. The asymmetric supply structure leads to asynchronous heat release oscillations between the two sides; it may be that one promotes oscillation and that the other suppresses it, or that both have a promotion effect but with asynchronous action, thus partly canceling each other out to lower the system’s oscillation intensity. This brings an advantage for controlling SETAI, which can be achieved by only changing one side of the structure. The oscillation amplitude can be reduced by 80–90% by appropriately changing one LP only by ~20%. Under an asymmetric combustion condition with φ differing between the two sides, the heat release oscillation on each side is dependent on the local φ but not the global φ. Consequently, SETAI can also be controlled by changing the distribution but maintaining a constant fuel feeding rate and φ. The concepts identified in this paper demonstrate that SETAI can be effectively controlled by adopting an asymmetric φ distribution or an asymmetric structure of the supply system. This provides a convenient SETAI control approach without affecting the equipment’s thermal performance.

Funder

Shaanxi Province key research and development plan

Shaanxi Provincial Technology Innovation Guidance Special Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3