Semi-Analytical Prediction of Ground Surface Heave Induced by Shield Tunneling Considering Three-Dimensional Space Effect

Author:

Qi Jianfeng123,Zhang Guohua1,Jiao Yuyong1,Shen Luyi1,Zheng Fei1ORCID,Zou Junpeng1,Zhang Peng1ORCID

Affiliation:

1. Faculty of Engineering, China University of Geosciences, Wuhan 430074, China

2. Wuhan Metro Group Co., Ltd., Wuhan 430070, China

3. Wuhan Rail Transit Line 12 Construction and Operation Co., Ltd., Wuhan 430010, China

Abstract

The ground surface deformation induced by shield tunnels passing through enclosure structures of existing tunnels is a particular underground construction scenario that has been encountered in Wuhan Metro Line 12 engineering cases in China. Timely ground deformation prediction is important to keep shield tunneling safe. However, the classic ground deformation theory is difficult to accurately predict for this ground deformation. This paper develops a semi-analytical method to predict ground heave considering the space effect in this engineering condition. Based on the improved ground deformation theory, a novel deformation prediction method for the ground and enclosure structure is derived and combined with Kirchhoff plate theory. Comparing with field deformation measurements, the maximum difference between the measured and calculated deformation is 14.6%, which demonstrates that the proposed method can be used to predict the ground heave induced by shield tunnels passing through the enclosure structure of existing tunnels. The parameters of the underground diaphragm wall used in Wuhan Metro Line 12 are further studied in detail. The results show that the ground heaves have a positive correlation with the embedded ratio of the diaphragm wall, but a negative correlation with its elastic modulus and thickness. However, the thickness and embedded ratio have a limited effect on ground heaves. This study provides a technical reference for optimizing the setting of enclosure structures in order to protect existing buildings.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3