Evaluation of Ride Comfort under Vortex-Induced Vibration of Long-Span Bridge

Author:

Wang Yafei1,Zhou Changfa234,Zhong Jiwei1,Wang Zhengxing1,Yao Wenfan1,Jiang Yuyin1,Laima Shujin1234

Affiliation:

1. National Key Laboratory of Bridge Intelligent and Green Construction, Wuhan 430034, China

2. Key Laboratory of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150090, China

3. Key Laboratory of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China

4. School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China

Abstract

The increasing number of suspension bridges has led to designs favoring greater length and flexibility, resulting in a common problem of vortex-induced vibration. While vortex-induced vibration typically does not cause structural damage, it diminishes the bridge’s fatigue resistance and has a detrimental impact on ride comfort. Additionally, this study introduces a road–bridge–vehicle vibration model, proposing an evaluation method for assessing ride comfort during vortex-induced vibrations in long-span bridges. This method features simplified modeling and swift calculations, circumventing the need for intricate finite element modeling and iterative solving. Furthermore, it evaluates ride comfort for vehicles crossing a prototype long-span suspension bridge using the Overall Vibration Total Value (OVTV) and Motion Sickness Incidence (MSI) criteria. This study also analyzes the influence of various parameters on OVTV and MSI, including vehicle speed, road grade, vortex-induced vibration frequency, and amplitude. It establishes a reference limit for vortex-induced vibration amplitude based on OVTV and MSI values. Moreover, the study substantiates that, within the context of vortex-induced vibration, the MSI value is more suitable for evaluating driving comfort compared to the OVTV.

Funder

National Key Research and Development Program of China

Open Projects Foundation

National Natural Sciences Foun-dation of China

Natural Science Foundation of Hei-longjiang Province

Postdoctoral Scientific Research Development Fund of Heilongjiang Province

Heilongjiang Touyan Team and Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3