CETD: Counterfactual Explanations by Considering Temporal Dependencies in Sequential Recommendation

Author:

He Ming1,An Boyang1,Wang Jiwen1,Wen Hao1

Affiliation:

1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

Abstract

Providing interpretable explanations can notably enhance users’ confidence and satisfaction with regard to recommender systems. Counterfactual explanations demonstrate remarkable performance in the realm of explainable sequential recommendation. However, current counterfactual explanation models designed for sequential recommendation overlook the temporal dependencies in a user’s past behavior sequence. Furthermore, counterfactual histories should be as similar to the real history as possible to avoid conflicting with the user’s genuine behavioral preferences. This paper presents counterfactual explanations by Considering temporal dependencies (CETD), a counterfactual explanation model that utilizes a variational autoencoder (VAE) for sequential recommendation and takes into account temporal dependencies. To improve explainability, CETD employs a recurrent neural network (RNN) when generating counterfactual histories, thereby capturing both the user’s long-term preferences and short-term behavior in their real behavioral history. Meanwhile, CETD fits the distribution of reconstructed data (i.e., the counterfactual sequences generated by VAE perturbation) in a latent space, and leverages learned variance to decrease the proximity of counterfactual histories by minimizing the distance between the counterfactual sequences and the original sequence. Thorough experiments conducted on two real-world datasets demonstrate that the proposed CETD consistently surpasses current state-of-the-art methods.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3