Tire Defect Detection via 3D Laser Scanning Technology

Author:

Zheng Li12ORCID,Lou Hong2ORCID,Xu Xiaomin3,Lu Jiangang1ORCID

Affiliation:

1. State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China

2. Zhongce Rubber Group Co., Ltd., Hangzhou 310018, China

3. Polytechnic Institute, Zhejiang University, Hangzhou 310027, China

Abstract

Tire defect detection, as an important application of automatic inspection techniques in the industrial field, remains a challenging task because of the diversity and complexity of defect types. Existing research mainly relies on X-ray images for the inspection of defects with clear characteristics. However, in actual production lines, the major threat to tire products comes from defects of low visual quality and ambiguous shape structures. Among them, bubbles, composing a major type of bulge-like defects, commonly exist yet are intrinsically difficult to detect in the manufacturing process. In this paper, we focused on the detection of more challenging defect types with low visibility on tire products. Unlike existing approaches, our method used laser scanning technology to establish a new three-dimensional (3D) dataset containing tire surface scans, which leads to a new detection framework for tire defects based on 3D point cloud analysis. Our method combined a novel 3D rendering strategy with the learning capacity of two-dimensional (2D) detection models. First, we extracted accurate depth distribution from raw point cloud data and converted it into a rendered 2D feature map to capture pixel-wise information about local surface orientation. Then, we applied a transformer-based detection pipeline to the rendered 2D images. Our method marks the first work on tire defect detection using 3D data and can effectively detect challenging defect types in X-ray-based methods. Extensive experimental results demonstrate that our method outperforms state-of-the-art approaches on 3D datasets in terms of detecting tire bubble defects according to six evaluation metrics. Specifically, our method achieved 35.6, 40.9, and 69.1 mAP on three proposed datasets, outperforming others based on bounding boxes or query vectors.

Funder

National Natural Science Foundation of China

National Key Research and Development Plan of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3