Affiliation:
1. Materials Innovation Centre, School of Engineering, University of Leicester, Leicester LE1 7RH, UK
2. Materials Performance and Integrity Group, TWI, Cambridge CB21 6AL, UK
Abstract
Geothermal power is an attractive and environmentally friendly energy source known for its reliability and efficiency. Unlike some renewables like solar and wind, geothermal energy is available consistently, making it valuable for mitigating climate change. Heat exchangers play a crucial role in geothermal power plants, particularly in binary cycle plants, where they represent a significant portion of capital costs. Protecting these components from deterioration is essential for improving plant profitability. Corrosion is a common issue due to direct contact with geothermal fluid, which can lead to heat exchanger failure. Additionally, temperature changes within the heat exchanger can cause scaling, reduce heat transfer efficiency, or even block the tubes. This review critically examines the challenges posed by corrosion and scaling in geothermal heat exchangers, with a primary focus on three key mitigation strategies: the application of corrosion-resistant alloys, the utilization of protective coating systems, and the introduction of anti-scaling agents and corrosion inhibitors into the geothermal fluid. The paper discusses recent strides in these approaches, identifying promising advancements and highlighting impending obstacles. By bridging existing knowledge gaps, this review aims to offer valuable insights into material selection, heat exchanger design, and the progression of geothermal energy production. Ultimately, it contributes to the ongoing endeavor to harness geothermal energy as a sustainable and enduring solution to our energy needs.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献