Cross-View Outdoor Localization in Augmented Reality by Fusing Map and Satellite Data

Author:

Emmaneel René12,Oswald Martin R.1,de Haan Sjoerd3,Datcu Dragos2

Affiliation:

1. Computer Vision Group, Informatics Institute, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

2. Huawei Technologies Netherlands, 1101 CM Amsterdam, The Netherlands

3. Go Grow AI, 1076 VC Amsterdam, The Netherlands

Abstract

Visual positioning is the task of finding the location of a given image and is necessary for augmented reality applications. Traditional algorithms solve this problem by matching against premade 3D point clouds or panoramic images. Recently, more attention has been given to models that match the ground-level image with overhead imagery. In this paper, we introduce AlignNet, which builds upon previous work to bridge the gap between ground-level and top-level images. By making multiple key insights, we push the model results to achieve up to 4 times higher recall rates on a visual position dataset. We use a fusion of both satellite and map data from OpenStreetMap for this matching by extending the previously available satellite database with corresponding map data. The model pushes the input images through a two-branch U-Net and is able to make matches using a geometric projection module to map the top-level image to the ground-level domain at a given position. By calculating the difference between the projection and ground-level image in a differentiable fashion, we can use a Levenberg–Marquardt (LM) module to iteratively align the estimated position towards the ground-truth position. This sample-wise optimization strategy allows the model to align the position better than if the model has to obtain the location in a single step. We provide key insights into the model’s behavior, which allows us to increase the model’s ability to obtain competitive results on the KITTI cross-view dataset. We compare our obtained results with the state of the art and obtain new best results on 3 of the 9 categories we look at, which include a 57% likelihood of lateral localization within 1 m in a 40 m × 40 m area and a 93% azimuth localization within 3∘ when using a 20∘ rotation noise prior.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3