A Discrete Prey–Predator Algorithm for Cloud Task Scheduling

Author:

Abdulgader Doaa Abdulmoniem1,Yousif Adil2,Ali Awad2

Affiliation:

1. Department of Computer Science, Faculty of Computer Science, University of Kassala, Kassala 31113, Sudan

2. Department of Computer Science, College of Science and Arts-Sharourah, Najran University, Sharourah 68341, Saudi Arabia

Abstract

Cloud computing is considered a key Internet technology. Cloud providers offer services through the Internet, such as infrastructure, platforms, and software. The scheduling process of cloud providers’ tasks concerns allocating clients’ tasks to providers’ resources. Several mechanisms have been developed for task scheduling in cloud computing. Still, these mechanisms need to be optimized for execution time and makespan. This paper presents a new task-scheduling mechanism based on Discrete Prey–Predator to optimize the task-scheduling process in the cloud environment. The proposed Discrete Prey–Predator mechanism assigns each scheduling solution survival values. The proposed mechanism denotes the prey’s maximum surviving value and the predator’s minimum surviving value. The proposed Discrete Prey–Predator mechanism aims to minimize the execution time of tasks in cloud computing. This paper makes a significant contribution to the field of cloud task scheduling by introducing a new mechanism based on the Discrete Prey–Predator algorithm. The Discrete Prey–Predator mechanism presents distinct advantages, including optimized task execution, as the mechanism is purpose-built to optimize task execution times in cloud computing, improving overall system efficiency and resource utilization. Moreover, the proposed mechanism introduces a survival-value-based approach, as the mechanism introduces a unique approach for assigning survival values to scheduling solutions, differentiating between the prey’s maximum surviving value and the predator’s minimum surviving value. This improvement enhances decision-making precision in task allocation. To evaluate the proposed mechanism, simulations using the CloudSim simulator were conducted. The experiment phase considered different scenarios for testing the proposed mechanism in different states. The simulation results revealed that the proposed Discrete Prey–Predator mechanism has shorter execution times than the firefly algorithm. The average of the five execution times of the Discrete Prey–Predator mechanism was 270.97 s, while the average of the five execution times of the firefly algorithm was 315.10 s.

Funder

Deputy for Research and Innovation, Ministry of Education, Kingdom of Saudi Arabia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Convergence of Prey Predator Algorithm;International Journal of Applied and Computational Mathematics;2024-03-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3