A Hybrid DNN Multilayered LSTM Model for Energy Consumption Prediction

Author:

AL-Ghamdi Mona1,AL-Ghamdi Abdullah AL-Malaise12ORCID,Ragab Mahmoud34ORCID

Affiliation:

1. Information Systems Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

2. Information Systems Department, School of Engineering, Computing and Design, Dar Al-Hekma University, Jeddah 22246, Saudi Arabia

3. Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

4. Mathematics Department, Faculty of Science, Al-Azhar University, Naser City, Cairo 11884, Egypt

Abstract

The ability to predict energy consumption in a world in which energy needs are ever-increasing is important for future growth and development. In recent years, deep learning models have made significant advancements in energy forecasting. In this study, a hybrid deep neural network (DNN) multilayered long short-term memory (LSTM) model was used to predict energy consumption in households. When evaluating the model, the individual household electric power consumption dataset was used to train, validate, and test the model. Preprocessing was applied to the data to minimize any prediction errors. Afterward, the DNN algorithm extracted the spatial features, and the multilayered LSTM model was used for sequential learning. The model showed a highly accurate predictive performance, as the actual consumption trends matched the predictive trends. The coefficient of determination, root-mean-square error, mean absolute error, and mean absolute percentage error were found to be 0.99911, 0.02410, 0.01565, and 0.01826, respectively. A DNN model and LSTM model were also trained to study how much improvement the proposed model would provide. The proposed model showed better performance than the DNN and LSTM models. Moreover, similar to other deep learning models, the proposed model’s performance was superior and provided accurate and reliable energy consumption predictions.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3