Bayesian Optimal Experimental Design for Race Tracking in Resin Transfer Moulding

Author:

Wright Nicholas1ORCID,Kelly Piaras1ORCID,Maclaren Oliver1ORCID,Nicholson Ruanui1ORCID,Advani Suresh2ORCID

Affiliation:

1. Department of Engineering Science, University of Auckland, Auckland 1010, New Zealand

2. Department of Mechanical Engineering and Centre for Composite Materials, University of Delaware, Newark, DE 19716, USA

Abstract

A Bayesian inference formulation is applied to the Resin Transfer Moulding process to estimate bulk permeability and race-tracking effects using measured values of pressure at discrete sensor locations throughout a preform. The algorithm quantifies uncertainty in both the permeability and race-tracking effects, which decreases when more sensors are used or the preform geometry is less complex. We show that this approach becomes less reliable with a smaller resin exit vent. Numerical experiments show that the formulation can accurately predict race-tracking effects with few measurements. A Bayesian A-optimality formulation is used to develop a method for producing optimal sensor locations that reduce the uncertainty in the permeability and race-tracking estimates the most. This method is applied to two numerical examples which show that optimal designs reduce uncertainty by up to an order of magnitude compared to a random design.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3