Braking Intention Identification Strategy of Electric Loader Based on Fuzzy Control

Author:

Ye Yueying12,Wu Xia23,Lin Tianliang23

Affiliation:

1. Chengyi College, Jimei University, Xiamen 361021, China

2. Fujian Key Laboratory of Green Intelligent Drive and Transmission for Mobile Machinery, Xiamen 361021, China

3. College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China

Abstract

As a widely-used construction machinery, the electric loader has the potential to recover braking energy due to its large mass and frequent starts and stops. Identifying braking intention accurately is the foundation of braking energy recovery. The typical braking condition of an electric loader is analyzed; the braking intention is divided into sliding brake, mild braking, moderate braking, and emergency braking. A large number of braking data were collected under different braking intentions, which are used as the basis for fuzzy control variable partitioning, fuzzy controller parameter setting and fuzzy control rule formulation. The control strategies of deceleration intention identification based on accelerator pedal, braking intention identification based on brake pedal and sliding brake intention identification are proposed in this paper, respectively. This paper takes the hydraulic brake pressure as a feedback parameter, even if there is hysteresis or failure based on the intention of pedal identification, the system can still provide sufficient braking strength to ensure the braking safety. The AMESim(R12)-Matlab/Simulink co-simulation model and prototype are built to verify the feasibility of the control strategy under different braking intention identification. The results show that the braking strength under stronger braking intention can satisfy the braking demand whether at a speed of 2 m/s or 12 m/s, which ensures the safety of emergency braking, and the electric loader can provide stable braking strength under different braking intention and different speed. This has good braking stability.

Funder

2020 Fujian Province young and middle-aged teacher education research project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3