Winding Loss Suppression in Inverter-Fed Traction Motors via Hybrid Coil Materials and Configurations

Author:

Selema Ahmed123ORCID,Tawfiq Kotb B.123ORCID,Ibrahim Mohamed N.124ORCID,Sergeant Peter12ORCID

Affiliation:

1. Department of Electromechanical, Systems, and Metal Engineering, Ghent University, 9000 Ghent, Belgium

2. FlandersMake@UGent, Core Lab MIRO, 3001 Leuven, Belgium

3. Department of Electrical Engineering, Faculty of Engineering, Menoufia University, Menoufia 32511, Egypt

4. Department of Electrical Engineering, Kafrelshiekh University, Kafrelshiekh 33511, Egypt

Abstract

In a typical inverter-fed AC drive system, the stator windings carry a current with a large harmonics content, resulting in an increased AC loss. In this paper, the additional copper losses caused by non-sinusoidal currents are investigated for different magnet wire topologies, including the flat conductor, stranded, and litz wires. Also, a two-slot simplified model is introduced for accurate prediction of the AC losses at high frequency. It is found that one of the major issues of the conventional copper coil is that the losses are not uniformly distributed across the slot, and over 70% of the losses are concentrated near the slot opening. Moreover, using the transient finite element method, different winding topologies and arrangements are simulated at the stranded level to evaluate the losses and current density for each strand under highly distorted currents. Furthermore, different coil samples are prototyped for the same slot geometries to compare their performance under the same pulse-width modulation (PWM) waveforms for a wide range of frequencies. Finally, new hybrid coil topologies are proposed, which employ different magnet wires or materials within the same slot. The results demonstrate that utilizing a mixed wire configuration can effectively mitigate the adverse effects of eddy current losses. This approach can yield up to 16–41% lower losses while also achieving a weight savings of 36–70%.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3