Evaluating the Performance of the Generalized Linear Model (glm) R Package Using Single-Cell RNA-Sequencing Data

Author:

Alaqeeli Omar1ORCID,Alturki Raad2

Affiliation:

1. Department of Computer Science, Saudi Electronic University, Riyadh 11673, Saudi Arabia

2. Department of Computer Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia

Abstract

The glm R package is commonly used for generalized linear modeling. In this paper, we evaluate the ability of the glm package to predict binomial outcomes using logistic regression. We use single-cell RNA-sequencing datasets, after a series of normalization, to fit data into glm models repeatedly using 10-fold cross-validation over 100 iterations. Our evaluation criteria are glm’s Precision, Recall, F1-Score, Area Under the Curve (AUC), and Runtime. Scores for each evaluation category are collected, and their medians are calculated. Our findings show that glm has fluctuating Precision and F1-Scores. In terms of Recall, glm has shown more stable performance, while in the AUC category, glm shows remarkable performance. Also, the Runtime of glm is consistent. Our findings also show that there are no correlations between the size of fitted data and glm’s Precision, Recall, F1-Score, and AUC, except for Runtime.

Funder

Imam Mohammad Ibn Saud Islamic University (IMSIU), Saudi Arabia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3