ESH: Design and Implementation of an Optimal Hashing Scheme for Persistent Memory

Author:

Regassa Dereje1ORCID,Yeom Heon Young2,Hwang Junseok1

Affiliation:

1. Department of Integrated Program of Smart City Global Convergence, Seoul National University, Seoul 08826, Republic of Korea

2. Department of Computer Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea

Abstract

Recent advancements in memory technology have opened up a wealth of possibilities for innovation in data structures. The emergence of byte-addressable persistent memory (PM) with its impressive capacity and low latency has accelerated the adoption of PM in existing hashing-based indexes. As a result, several new hashing schemes utilizing emulators have been proposed. However, these schemes have proven to be suboptimal, lacking scalability when implemented on real devices. Only a handful of hash table designs have successfully addressed critical properties such as load factor, scalability, efficient memory utilization, and recovery. One of the main challenges in redesigning data structures for an effective hashing scheme in PM is minimizing the overhead associated with dynamic hashing operations in the hash table. To tackle this challenge, this paper introduces ESH, an efficient and scalable hashing scheme that significantly improves memory efficiency, scalability, and overall performance on PM. The ESH scheme maximizes the utilization of the hash table’s available space, thus reducing the frequency of full-table rehashing and improving performance. Consequently, this scheme achieves a high load factor while minimizing the need for rehashing. To evaluate the effectiveness of the ESH scheme, we compare it to widely used dynamic hashing schemes employing similar techniques on Intel Optane® DC persistent memory (DCPMM). The experimental results demonstrate that ESH outperforms CCEH and Dash in terms of data insertion performance, exhibiting a 30% improvement over CCEH and a 4% improvement over Dash. Furthermore, ESH improves the lookup operation by nearly 10% compared to Dash, while achieving a load factor of up to 91%, surpassing its competitors.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference56 articles.

1. Intel (2021). Intel® Optane™ DC Persistent Memory, Intel. Release 1.

2. Intel Corporation (2022). Intel® Optane™ DC Persistent Memory, Intel. Release 2.

3. BzTree: A high-performance latch-free range index for non-volatile memory;Arulraj;Proc. VLDB Endow.,2018

4. Chen, S., Gibbons, P.B., and Nath, S. (2011, January 9–12). Rethinking Database Algorithms for Phase Change Memory. Proceedings of the Conference on Innovative Data Systems Research (CIDR), Asilomar, CA, USA.

5. Oracle, S. (2018). Architectural Overview of the Oracle ZFS Storage Appliance, Oracle.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3