Abstract
Location-based indoor applications with high quality of services require a reliable, accurate, and low-cost position prediction for target device(s). The widespread availability of WiFi received signal strength indicator (RSSI) makes it a suitable candidate for indoor localization. However, traditional WiFi RSSI fingerprinting schemes perform poorly due to dynamic indoor mobile channel conditions including multipath fading, non-line-of-sight path loss, and so forth. Recently, machine learning (ML) or deep learning (DL)-based fingerprinting schemes are often used as an alternative, overcoming such issues. This paper presents an extreme gradient boosting-based ML indoor localization scheme, simply termed as XGBLoc, that accurately classifies (or detects) the positions of mobile devices in multi-floor multi-building indoor environments. XGBLoc not only effectively reduces the RSSI dataset dimensionality but trains itself using structured synthetic labels (also termed as relational labels), rather than conventional independent labels, that classify such complex and hierarchical indoor environments well. We numerically evaluate the proposed scheme on the publicly available datasets and prove its superiority over existing ML or DL-based schemes in terms of classification and regression performance.
Funder
National Research Foundation of Korea
Catholic University of Korea
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献