Numerical Simulation of Winter Precipitation over the Western Himalayas Using a Weather Research and Forecasting Model during 2001–2016

Author:

Punde Pravin,Nischal Nischal,Attada Raju,Aggarwal DeepanshuORCID,Radhakrishnan Chandrasekar

Abstract

In the present study, dynamically downscaled Weather Research and Forecasting (WRF) model simulations of winter (DJF) seasonal precipitation were evaluated over the Western Himalayas (WH) at grey zone configurations (at horizontal resolutions of 15 km (D01) and 5 km (D02)) and further validated using satellite-based (IMERG; 0.1°), observational (IMD; 0.25°), and reanalysis (ERA5; 0.25° and IMDAA; 0.108°) gridded datasets during 2001–2016. The findings demonstrate that both model resolutions (D01 and D02) are effective at representing precipitation characteristics over the Himalayan foothills. Precipitation features over the region, on the other hand, are much clearer and more detailed, with a significant improvement in D02, emphasizing the advantages of higher model grid resolution. Strong correlations and the lowest biases and root mean square errors indicate a closer agreement between model simulations and reanalyses IMDAA and ERA5. Vertical structures of various dynamical and thermodynamical features further confirm the improved and more realistic in WRF simulations with D02. Moreover, the seasonal patterns of upper tropospheric circulation, vertically integrated moisture transport, surface temperature and cloud cover show more realistic simulation in D02 compared to coarser domain D01. The categorical statistics reveal the efficiency of both D01 and D02 in simulating moderate and heavy precipitation events. Overall, our study emphasizes the significance of high-resolution data for simulating precipitation features specifically over complex terrains like WH.

Funder

the Science and Engineering Research Board, Department of Science and Technology, Government of India under the “Start-up Research Grant (SRG) scheme”

Publisher

MDPI AG

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3