The Influence of a Knitted Hydrophilic Prosthesis of Blood Vessels on the Activation of Coagulation System—In Vitro Study

Author:

Szymonowicz Maria,Dobrzynski MaciejORCID,Targonska SaraORCID,Rusak AgnieszkaORCID,Rybak ZbigniewORCID,Struszczyk Marcin H.,Majda Jacek,Szymanski DamianORCID,Wiglusz Rafal J.ORCID

Abstract

The replacement of affected blood vessels of the polymer material can cause imbalances in the blood haemostatic system. Changes in blood after the implantation of vascular grafts depend not only on the chemical composition but also on the degree of surface wettability. The Dallon® H unsealed hydrophilic knitted vascular prosthesis double velour was assessed at work and compare with hydrophobic vascular prosthesis Dallon®. Spectrophotometric studies were performed in the infrared and differential scanning calorimetry, which confirmed the effectiveness of the process of modifying vascular prostheses. Determination of the parameters of coagulation time of blood after contact in vitro with Dallon® H vascular prosthesis was also carried out. Prolongation of activated thromboplastin time, decreased activity of factor XII, IX and VIII, were observed. The prolonged thrombin and fibrinogen were reduced in the initial period of the experiment. The activity of plasminogen and antithrombin III and protein C were at the level of control value. The observed changes in the values of determined parameters blood coagulation do not exceed the range of referential values for those indexes. The observed changes are the result of considerable blood absorptiveness by the prosthesis of blood vessels and their sealing.

Funder

Narodowe Centrum Nauki

Uniwersytet Medyczny im. Piastów Slaskich we Wroclawiu

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fabrication of a tri-layer scaffold with dual release of heparin and PRP for tissue engineering of small‐diameter blood vessels;International Journal of Polymeric Materials and Polymeric Biomaterials;2023-12-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3