A Multifunctional Au/CeO2-Mg(OH)2 Catalyst for One-Pot Aerobic Oxidative Esterification of Aldehydes with Alcohols to Alkyl Esters

Author:

Lim SeulgiORCID,Kwon SeungdonORCID,Kim NagyeongORCID,Na KyungsuORCID

Abstract

Au nanoparticles bound to crystalline CeO2 nanograins that were dispersed on the nanoplate-like Mg(OH)2, denoted as Au/CeO2-Mg(OH)2, were developed as the highly active and selective multifunctional heterogeneous catalyst for direct oxidative esterification of aldehydes with alcohols to produce alkyl esters under base-free aerobic conditions using oxygen or air as the green oxidants. Au/CeO2-Mg(OH)2 converted 93.3% of methacrylaldehyde (MACR) to methyl methacrylate (MMA, monomer of poly(methyl methacrylate)) with 98.2% selectivity within 1 h, and was repeatedly used over eight recycle runs without regeneration. The catalyst was extensively applied to other aldehydes and alcohols to produce desirable alkyl esters. Comprehensive characterization analyses revealed that the strong metal–support interaction (SMSI) among the three catalytic components (Au, CeO2, and Mg(OH)2), and the proximity and strong contact between Au/CeO2 and the Mg(OH)2 surface were prominent factors that accelerated the reaction toward a desirable oxidative esterification pathway. During the reaction, MACR was adsorbed on the surface of CeO2-Mg(OH)2, upon which methanol was simultaneously activated for esterifying the adsorbed MACR. Hemiacetal-form intermediate species were subsequently produced and oxidized to MMA on the surface of the electron-rich Au nanoparticles bound to partially reduced CeO2−x with electron-donating properties. The present study provides new insights into the design of SMSI-induced supported-metal-nanoparticles for the development of novel, multifunctional, and heterogeneous catalysts.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3