Defects and Strain Engineering of Structural, Elastic, and Electronic Properties of Boron-Phosphide Monolayer: A Hybrid Density Functional Theory Study

Author:

Li Fang-Qiang,Zhang Yang,Zhang Sheng-Li

Abstract

Defects and in-plane strain have significant effects on the electronic properties of two-dimensional nanostructures. However, due to the influence of substrate and environmental conditions, defects and strain are inevitable during the growth or processing. In this study, hybrid density functional theory was employed to systematically investigate the electronic properties of boron-phosphide monolayers tuned by the in-plane biaxial strain and defects. Four types of defects were considered: B-vacancy (B_v), P-vacancy (P_v), double vacancy (D_v), and Stone–Wales (S-W). Charge density difference and Bader charge analysis were performed to characterize the structural properties of defective monolayers. All of these defects could result in the boron-phosphide monolayer being much softer with anisotropic in-plane Young’s modulus, which is different from the isotropic modulus of the pure layer. The calculated electronic structures show that the P_v, D_v, and S-W defective monolayers are indirect band gap semiconductors, while the B_v defective system is metallic, which is different from the direct band gap of the pure boron-phosphide monolayer. In addition, the in-plane biaxial strain can monotonically tune the band gap of the boron-phosphide monolayer. The band gap increases with the increasing tension strain, while it decreases as the compression strain increases. Our results suggest that the defects and in-plane strain are effective for tuning the electronic properties of the boron-phosphide monolayer, which could motivate further studies to exploit the promising application in electronics and optoelectronics based on the boron-phosphide monolayer.

Funder

Natural Science Fundamental Research Program of Shaanxi Province of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3