A Molecular Shape Recognitive HPLC Stationary Phase Based on a Highly Ordered Amphiphilic Glutamide Molecular Gel

Author:

Kawamoto Naoki,Hu Yongxing,Kuwahara YutakaORCID,Ihara HirotakaORCID,Takafuji MakotoORCID

Abstract

Chiral glutamide-derived lipids form self-assembled fibrous molecular gels that can be used as HPLC organic phases. In this study, HPLC separation efficiency was improved through the addition of branched amphiphilic glutamide lipids to the side chains of a terminally immobilized flexible polymer backbone. Poly(4-vinylpyridine) with a trimethoxysilyl group at one end was grafted onto the surface of porous silica particles (Sil−VP15, polymerization degree = 15), and the pyridyl side chains were quaternized with a glutamide lipid having a bromide group (BrG). Elemental analysis indicated that the total amount of the organic phase of the prepared stationary phase (Sil−VPG15) was 38.0 wt%, and the quaternization degree of the pyridyl groups was determined to be 32.5%. Differential scanning calorimetric analysis of a methanol suspension of Sil−VPG15 indicated that the G moieties formed a highly ordered structure below the phase transition temperature even on the silica surface, and the ordered G moieties exhibited a gel-to-liquid crystalline phase transition. Compared with a commercially available octadecylated silica column, the Sil−VPG15 stationary phase showed high selectivity toward polycyclic aromatic hydrocarbons, and particularly excellent separations were obtained for geometrical and positional isomers. Sil−VPG15 also showed highly selective separation for phenol derivatives, and bio-related molecules containing phenolic groups such as steroids were successfully separated. These separation abilities are probably due to multiple interactions between the elutes and the highly ordered functional groups, such as the pyridinium and amide groups, on the highly ordered molecular gel having self-assembling G moieties.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3