Abstract
The transparent conductive films (TCFs) based on silver nanowires are expected to be a next-generation electrode for flexible electronics. However, their defects such as easy oxidation and high junction resistance limit its wide application in practical situations. Herein, a method of coating Ti3C2Tx with different sizes was proposed to prepare silver nanowire/MXene composite films. The solution-processed silver nanowire (AgNW) networks were patched and welded by capillary force effect through the double-coatings of small and large MXene nanosheets. The sheet resistance of the optimized AgNW/MXene TCFs was 15.1 Ω/sq, the optical transmittance at 550 nm was 89.3%, and the figure of merit value was 214.4. Moreover, the AgNW/MXene TCF showed higher stability at 1600 mechanical bending, annealing at 100 °C for 50 h, and exposure to ambient air for 40 days. These results indicate that the novel AgNW/MXene TCFs have a great potential for high-performance flexible optoelectronic devices.
Subject
General Materials Science,General Chemical Engineering
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献