Scalable Solution-Processed Fabrication Approach for High-Performance Silver Nanowire/MXene Hybrid Transparent Conductive Films

Author:

Wang Pengchang,Zhang Chi,Wu Majiaqi,Zhang Jianhua,Ling Xiao,Yang LianqiaoORCID

Abstract

The transparent conductive films (TCFs) based on silver nanowires are expected to be a next-generation electrode for flexible electronics. However, their defects such as easy oxidation and high junction resistance limit its wide application in practical situations. Herein, a method of coating Ti3C2Tx with different sizes was proposed to prepare silver nanowire/MXene composite films. The solution-processed silver nanowire (AgNW) networks were patched and welded by capillary force effect through the double-coatings of small and large MXene nanosheets. The sheet resistance of the optimized AgNW/MXene TCFs was 15.1 Ω/sq, the optical transmittance at 550 nm was 89.3%, and the figure of merit value was 214.4. Moreover, the AgNW/MXene TCF showed higher stability at 1600 mechanical bending, annealing at 100 °C for 50 h, and exposure to ambient air for 40 days. These results indicate that the novel AgNW/MXene TCFs have a great potential for high-performance flexible optoelectronic devices.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3